Summer Bridge Course: Analysis

Dr. Kahn

Infimum/Supremum

Upper bound: $A \subseteq \mathbb{R}$ is bounded above if $\exists U \in \mathbb{R}$ such that $a \leq U, \forall a \in A$.
U is called the upper bound of A.
Lower bound: $A \subseteq \mathbb{R}$ is bounded below if $\exists L \in \mathbb{R}$ such that $L \leq a, \forall a \in A$.
L is called the lower bound of A.
Bounded: A is bounded if A is bounded both above and below ($L \leq a \leq U, \forall a \in A$)
Supremum: $E \subseteq \mathbb{R}, E \neq \emptyset . \alpha=\sup (E)$ if

1. $x \leq \alpha, \forall x \in E$
2. If $\gamma \in \mathbb{R}$ and $\gamma<\alpha$, then γ is not an upperbound of E.

Infimum: $E \subseteq \mathbb{R}, E \neq \emptyset . \beta=\inf (E)$ if

1. $\beta \leq x, \forall x \in E$
2. If $\gamma \in \mathbb{R}$ and $\gamma>\beta$, then γ is not a lower bound of E.

Completeness Property:

1. $E \subseteq \mathbb{R}, E \neq \emptyset$, and E is bounded above, then there exists $\alpha \in \mathbb{R}$ such that $\alpha=\sup (E)$.
(Note: α may or may not be in E.)
2. $E \subseteq \mathbb{R}, E \neq \emptyset$, and E is bounded below, then there exists $\beta \in \mathbb{R}$ such that $\beta=\inf (E)$.
(Note: β may or may not be in E.)
Archimedian Property: If $x, y \in \mathbb{R}$ and $x>0$, then $\exists n \in \mathbb{N}$ such that $n x>y$.
Density of \mathbb{Q} : If $x, y \in \mathbb{R}$ and $x<y$, then there always exists an $r \in \mathbb{Q}$ such that $x<r<y$.

Sequences in \mathbb{R}

Convergence: $\left\{x_{n}\right\}$ converges to $x \in \mathbb{R}$ if $\forall \epsilon>0, \exists n_{0}(\epsilon)$ such that $\left|s_{n}-x\right|<\epsilon, \forall n>n_{0}$. Proof Outline: To show $\left\{x_{n}\right\}$ converges to x :

1. Do scratch work to find $\left|x_{n}-x\right|<$ $($ term involving $n)<\epsilon$.
2. Choose n_{0} based off your scratch work.
3. Write out proof and include scratch work.

Diverges: $\left\{x_{n}\right\}$ diverges to ∞ if
$\forall M>0, \exists n_{0}(M)$ such that $x_{n}>M, \forall n>n_{0}$.
Triangle Inequality:

- $|x+y| \leq|x|+|y|$
- $||x|-|y|| \leq|x-y|$

Theorem: If $\left\{x_{n}\right\}$ is a convergent sequence, then $\left\{x_{n}\right\}$ is bounded.
Theorem: Let $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$.

- $a_{n} \pm b_{n} \rightarrow a \pm b$
- $a_{n} b_{n} \rightarrow a b$
- $\frac{b_{n}}{a_{n}} \rightarrow \frac{b}{a}$ as long as $a_{n} \neq 0, a \neq 0, \forall n \in \mathbb{N}$
- $a_{n}+c \rightarrow a+c, c \in \mathbb{R}$
- $c a_{n} \rightarrow c a, c \in \mathbb{R}$

Theorem: If $a_{n} \rightarrow 0$ and b_{n} is bounded, then $a_{n} b_{n} \rightarrow 0$.
Squeeze Lemma: Let a_{n}, b_{n}, c_{n} be sequences of real numbers such that $a_{n} \leq b_{n} \leq c_{n}, \forall n \geq n_{0}$. If $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then $b_{n} \rightarrow L$.

Sequences in \mathbb{R} continued:

Monotone Increasing: A sequence $\left\{x_{n}\right\}$ is monotone increasing if $x_{n+1} \geq x_{n}, \forall n \in \mathbb{N}$.
(Strictly if $x_{n+1}>x_{n}$).
Monotone Decreasing: A sequence $\left\{x_{n}\right\}$ is monotone decreasing if $x_{n+1} \leq x_{n}, \forall n \in \mathbb{N}$.
(Strictly if $x_{n+1}<x_{n}$).
Theorem: If $\left\{x_{n}\right\}$ is monotone and bounded, then $x_{n} \rightarrow x$.
Nested Interval Property: $\left\{I_{n}\right\}$ is a sequence of closed and bounded intervals $I_{n}=\left[a_{n}, b_{n}\right],-\infty<$ $a_{n}<b_{n}<\infty$ such that $\subseteq \cdots \subseteq I_{n} \subseteq I_{n-1} \subseteq \cdots \subseteq I_{1}$. So, $I_{n+1} \subseteq I_{n}, \forall n \in \mathbb{N}$. So, $\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset$.
Subsequence: Given a sequence $\left\{x_{n}\right\}$, consider the sequence $\left\{n_{k}\right\}$ of positive integers such that $n_{1}<$ $n_{2}<n_{3}<\cdots$. Then $\left\{x_{n_{k}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$. Theorem: If $\left\{x_{n}\right\} \subseteq \mathbb{R}$ such that $x_{n} \rightarrow x$, then every subsequence also converges to x.
Bolzano-Weierstrass: Every bounded sequence has a convergent subsequence.
Cauchy: A sequence $\left\{x_{n}\right\}$ is Cauchy if $\forall \epsilon>0, \exists n_{0}(\epsilon)$ such that $\left|x_{n}-x_{m}\right|<\epsilon, \forall n, m \geq n_{0}$.
(Note: Convergence \Longrightarrow Cauchy)
Completeness of $\mathbb{R}:\left\{x_{n}\right\} \subseteq \mathbb{R}$ is Cauchy implies $x_{n} \rightarrow x \in \mathbb{R}$

Important Known Sequences:
Special Need to Know Sequences:

- $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0(p>0)$
- $\lim _{n \rightarrow \infty} \sqrt[n]{p}=1(p>0)$
- $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
- $\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{p^{n}}=0(p>1, \alpha \in \mathbb{R})$
- $\lim _{n \rightarrow \infty} p^{n}=0(|p|<1)$
- $\lim _{n \rightarrow \infty} \frac{p^{n}}{n!}=0, \forall p \in \mathbb{R}$

Limit Supremum and Limit Infimum:

Lim Sup: $\varlimsup_{n \rightarrow \infty} x_{n}=\inf _{k} \sup \left\{x_{n}: n \geq k\right\}$
$=\inf _{k} b_{k}=\lim _{k \rightarrow \infty} b_{k}$
Lim Inf: $\lim _{n \rightarrow \infty} x_{n}=\sup _{k} \inf \left\{x_{n}: n \geq k\right\}$
$=\sup _{k} a_{k}=\lim _{k \rightarrow \infty} a_{k}$
Theorem: Let $\left\{x_{n}\right\} \subseteq \mathbb{R}$ (similar theorem holds true for lim inf)

1. $\varlimsup_{n \rightarrow \infty} x_{n}=\beta \in \mathbb{R}$ iff
(a) (a) $\forall \epsilon>0, \exists n_{0} \in \mathbb{N}$ such that $x_{n}<$ $\beta+\epsilon, \forall n \geq n_{0}$
(b) (b) Given $n \in \mathbb{N}, \exists k \in \mathbb{N}$ with $k \geq n$ such that $x_{k}>\beta-\epsilon$.
2. $\varlimsup_{n \rightarrow \infty} x_{n}=+\infty$ iff given $M>0$ and $n \in$ $\mathbb{N}, \exists k \in \mathbb{N}$ such that $x_{n} \geq M, \forall k \geq n$.
3. $\varlimsup_{n \rightarrow \infty} x_{n}=-\infty$ iff $x_{n} \rightarrow-\infty$ as $n \rightarrow \infty$.

Fact: $x_{n} \rightarrow x$ iff $\overline{\lim } x_{n}=\underline{\lim } x_{n}$
How to: If $E=\left\{\right.$ subsequential limits of $\left.x_{n}\right\}$, then

- $\overline{\lim } x_{n}=\sup (E)$
- $\underline{\lim } x_{n}=\inf (E)$

Topology on \mathbb{R} :

Interior Point: $E \subseteq \mathbb{R}, p \in E$ is an interior point if $\exists \epsilon>0$ such that $(p-\epsilon, p+\epsilon)=N_{\epsilon}(p) \subseteq E$ Limit Point: $E \subseteq \mathbb{R}, p \in \mathbb{R}$ is a limit point of E if $\forall \epsilon>0, \exists q \in E$ such that $q \neq p$ and $q \in N_{\epsilon}(p) \cap E$.
$\operatorname{Int}(\mathbb{E}): \operatorname{Int}(\mathrm{E})=\{$ all interior points of $E\}$
$\mathbb{E}^{\prime}: \mathrm{E}^{\prime}=\{$ set of all limit points of $E\}$ Closure of $\mathrm{E}: \overline{\mathrm{E}}=\mathrm{E} \cup \mathrm{E}^{\prime}$
Open Set: $\mathrm{O} \subseteq \mathbb{R}$ is open if $\operatorname{Int}(\mathrm{O})=\mathrm{O}$.
Closed Set: $\mathrm{F} \subseteq \mathbb{R}$ is closed if F^{c} is open.
Theorem: For open sets...

1. For any collection $\left\{O_{\alpha}\right\}_{\alpha \in A}, O_{\alpha} \subseteq \mathbb{R}$ open \Longrightarrow $\bigcup_{\alpha \in A} O_{\alpha}$ open.
2. O_{1}, \cdots, O_{n} open $\Longrightarrow \bigcap_{k=1}^{n} O_{k}$ open.

Theorem: For closed sets...

1. For $\left\{F_{\alpha}\right\}_{\alpha \in A}, F_{\alpha} \subseteq \mathbb{R}$ closed, $\forall \alpha \in A \Longrightarrow$ $\bigcap_{\alpha \in A} F_{\alpha}$ closed.
2. For $\left\{F_{\alpha}\right\}_{\alpha \in A}, F_{\alpha} \subseteq \mathbb{R}$ closed, $\forall \alpha \in A \Longrightarrow$ $\bigcup_{k=1}^{n} F_{k}$ closed.

Topology on \mathbb{R} continued:

Theorem: $F \subseteq \mathbb{R}$ is closed $\Longleftrightarrow F$ contains all its limit points.
Theorem: If $E \subseteq \mathbb{R}$, then

1. \bar{E} is closed.
2. $E=\bar{E}$ iff E is closed.
3. $\bar{E} \subseteq F$ for every $F \subseteq \mathbb{R}$ closed such that $E \subseteq F$.

Open Cover: $E \subseteq \mathbb{R} .\left\{O_{\alpha}\right\}_{\alpha \in A}$ is an open cover (i.e. $O_{\alpha} \subseteq \mathbb{R}$ open) and $E \subseteq \bigcup_{\alpha \in A} O_{\alpha}$

Compact: $K \subseteq \mathbb{R}$ is compact if every open cover has a finite subcover. $\left(\exists \alpha_{1}, \cdots, \alpha_{n} \in A\right.$ such that $\left.K \subseteq O_{\alpha_{1}} \cup \cdots \cup O_{\alpha_{n}}=\bigcup_{k=1}^{n} O_{\alpha_{k}}\right)$.
Theorem: Every compact subset of \mathbb{R} is closed an bounded.
Heine-Borel Theorem: $[a, b] \subseteq \mathbb{R}$ is compact. $(-\infty<a, b<\infty)$
Heine-Borel-Bolzano-Weierstrass: $K \subseteq \mathbb{R}$, then TFAE:
a) K is closed and bounded.
b) K is compact.
c) Every infinite set in K has a limit point in K.

Corollary: Let $K \subseteq \mathbb{R}, K \neq \emptyset . \quad K$ is compact \Longrightarrow every bounded sequence has a convergent subsequence.
Cauchy-Schwartz: $\left(a_{1}, \cdots, a_{n}\right),\left(b_{1}, \cdots, b_{n}\right) \in \mathbb{R}^{n}$. $\sum\left|a_{k}\right|\left|b_{k}\right| \leq\left(\sum\left|a_{k}\right|^{2}\right)^{\frac{1}{2}}\left(\sum\left|b_{k}\right|^{2}\right)^{\frac{1}{2}}$.
Minkowski: $\left(a_{1}, \cdots, a_{n}\right),\left(b_{1}, \cdots, b_{n}\right) \in \mathbb{R}^{n}$. $\left(\sum\left|a_{k}+b_{k}\right|^{2}\right)^{\frac{1}{2}} \leq\left(\sum\left|a_{k}\right|^{2}\right)^{\frac{1}{2}}+\left(\sum\left|b_{k}\right|^{2}\right)^{\frac{1}{2}}$
Höldei: $\frac{1}{p}+\frac{1}{q}=1$.
$\sum_{k=1}^{n}\left|a_{k}\right|\left|b_{k}\right| \leq\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right)^{\frac{1}{q}}$

Series of Real Numbers:

Theorem: If $S_{n}=\sum_{k=1}^{n} x_{k}$ converges, then the series $\sum_{k=1}^{\infty} x_{k}$ converges and $S=\sum_{k=1}^{\infty} x_{k}$.
Cauchy Criteria: $\sum_{k=1}^{\infty} x_{k}$ converges \Longleftrightarrow
$\forall \epsilon>0, \exists n_{0}(\epsilon)$ such that $\left|S_{m}-S_{n}\right|=\left|\sum_{k=n+1}^{m} x_{k}\right|<$ $\epsilon, \forall n, m \geq n_{0}$.
Theorem of Convergence: If $\sum_{k=1}^{\infty} x_{k}$ converges, then $\lim _{n \rightarrow \infty} x_{n}=0$.
Theorem of Divergence: If $\lim _{n \rightarrow \infty}\left|x_{n}\right| \neq 0$, then $\sum_{k=1}^{\infty} x_{k}$ diverges.

Convergence Tests for Series

Comparison Tests:

1. If $\left|x_{n}\right| \leq c_{n}, \forall n \geq n_{0}$, where n_{0} is fixed, then $\sum_{k=1}^{\infty} c_{k}<\infty \Longrightarrow \sum_{k=1}^{\infty} x_{k}<\infty$.
2. If $a_{k} \geq 0, b_{k} \geq 0$ and $a_{k} \geq b_{k}, \forall k \geq n_{0}$
$\left(n_{0}\right.$ fixed), then $\sum_{k=1}^{\infty} b_{k}=+\infty \quad \Longrightarrow$ $\sum_{k=1}^{\infty} a_{k}=+\infty$.

Limit Comparison Tests: Suppose $a_{k} \geq 0$ and $b_{k} \geq 0$. Then,

1. If $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=L, 0<L<\infty$, then $\sum_{k=1}^{\infty} a_{k}<$ $\infty \Longleftrightarrow \sum_{k=1}^{\infty} b_{k}<\infty$.
2. If $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=0$ and $\sum_{k=1}^{\infty} b_{k}<\infty$, then $\sum_{k=1}^{\infty} a_{k}<\infty$.

Integral Test: Let $\left\{a_{k}\right\}$ be a decreasing sequence of nonnegative real numbers $\left(a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq\right.$ $\cdots \geq 0)$. Let $f(x):[1, \infty) \rightarrow \mathbb{R}$ and $f(x) \geq 0$ such that f is monotone decreasing and $f(k)=a_{k}, \forall k \in \mathbb{N}$. Then $\sum_{k=1}^{\infty} a_{k}<\infty$ iff $\int_{1}^{\infty} f(x) d x<\infty$.
Root Test: Given $\sum_{k=1}^{\infty} a_{k}$, let $\alpha=\varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$.

1. If $\alpha<1$, then $\sum_{k=1}^{\infty} a_{k}$ converges.
2. If $\alpha>1$, then $\sum_{k=1}^{\infty} a_{k}$ diverges.
3. If $\alpha=1$, then the test is inconclusive.

Ratio Test: The series $\sum_{k=1}^{\infty} a_{k}$

1. converges if $\alpha=\overline{\lim }_{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$.
2. diverges if $\frac{\left|a_{n+1}\right|}{a_{n}} \geq 1, \forall n \geq n_{0}$ for some $n_{0} \in \mathbb{N}$.

Alternating Series Test: If $\left\{b_{n}\right\} \subseteq \mathbb{R}$ such that

1. $b_{1} \geq b_{2} \geq \cdots \geq b_{n} \geq b_{n+1} \geq \cdots \geq 0$
2. $\lim _{n \rightarrow \infty} b_{n}=0$
then $\sum(-1)^{k+1} b_{k}$ converges.
Absolute Convergence: $\sum a_{k}$ converges absolutely if $\sum\left|a_{k}\right|<\infty$.
Theorem: If $\sum a_{k}$ converges absolutely, $\sum a_{k}$ converges.

Important Known Series:

	Geometric	p-Series	$n \log (n)$
	$\sum_{k=1}^{\infty} x^{k}$	$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$	$\sum_{n=2}^{\infty} \frac{1}{n(\log (n))^{p}}$
converges	$0 \leq x<1$	$p>1$	$p>1$
diverges	$x \geq 1$	$p \leq 1$	$p \leq 1$

Continuous Functions

Limit at a point: Given $L \in \mathbb{R}, \lim _{x \rightarrow a} f(x)=L$ if $\forall \epsilon>0, \exists \delta(f, \epsilon, a)>0$ such that $|f(x)-L|<\epsilon$ whenever $0<|x-a|<\delta$.
Theorem: Let f be a real-valued function defined in some neighborhood $a \in \mathbb{R}$ (including a). Then,

1. f is continuous at a.
$(\forall \epsilon>0, \exists \delta>0$ s.t. $|f(x)-f(a)|<\epsilon$ if $|x-a|<\delta)$.
2. $f\left(x_{n}\right) \rightarrow f(a)=L$ whenever $x_{n} \rightarrow a$.

Proof Outline: To show $\lim _{x \rightarrow a} f(x)=f(a)$:

1. Do scratch work to find appropriate δ by finding $|f(x)-f(a)|<($ term involving $|x-a|)<\epsilon$.
2. Note that sometimes you need to chose δ to be a minimum of two things to make the inequality true. Be careful!
3. Write out proof and include scratch work.

Right Limit: $\lim _{x \rightarrow a^{+}} f(x)=L^{+}$is the right limit if $\forall \epsilon>0, \exists \delta(f, a, \epsilon)>0$ such that $\left|f(x)-L^{+}\right|<\epsilon$ if $a<x<a+\delta$.
Left Limit: $\lim _{x \rightarrow a^{-}} f(x)=L^{-}$is the left limit if $\forall \epsilon>0, \exists \delta(f, a, \epsilon)>0$ such that $\left|f(x)-L^{-}\right|<\epsilon$ if $a-\delta<x<a$.
Continuous at a: f is continuous at a if
$f\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f\left(a^{-}\right)$
Facts: If f, g are continuous functions at a, then

- $f+g$ is continuous at a.
- $f g$ is continuous at a.
- $\frac{1}{g}$ is continuous at $a(g(x) \neq 0)$

Composition Continuity: $f: A \rightarrow \mathbb{R}, g: B \rightarrow \mathbb{R}$, and Range $(f) \subseteq B$. If f is continuous at a and g is continuous at $f(a)$, then $g \circ f(x)=g(f(x))$ is continuous at a.

Continuous Functions Continued:

Uniform Continuous: $f: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$. f is uniformly continuous on A if $\forall \epsilon>0, \exists \delta(f, A, \epsilon)>0$ such that $|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta$.
(Note: δ does NOT depend on a)
Lipschitz Continuous: $f: A \rightarrow \mathbb{R}$ is Lipschitz continuous if $\exists M>0$ such that $|f(x)-f(y)| \leq$ $M|x-y|, \forall x, y \in A$.
Fact: Lipschitz \Longrightarrow uniform \Longrightarrow continuous Theorem: If $f: K \rightarrow \mathbb{R}, K \subseteq \mathbb{R}$ compact, and f continuous on K, then f is uniformly continuous. Monotone Increasing: f is monotone increasing if $f(x) \leq f(y), \forall x<y$. (Strictly if $f(x)<f(y)$) Monotone Decreasing: f is monotone decreasing if $f(x) \geq f(y), \forall x<y$. (Strictly if $f(x)<f(y))$ Theorem: If $f: I \rightarrow \mathbb{R}$ monotone increasing on I, then $f\left(p^{+}\right)$and $f\left(p^{-}\right)$exists for all $p \in I$ and $\sup _{x<p} f(x)=f\left(p^{-}\right) \leq f(p) \leq f\left(p^{+}\right)=\inf _{x>p} f(x)$.

Sequences and Series of Functions:

Pointwise Limit: Let x_{0} be fixed in E. Then $\left\{f_{n}\left(x_{0}\right)\right\} \subseteq \mathbb{R}$. Let $f\left(x_{0}\right)=n_{x_{0}}$. Let $\left\{f_{n}\left(x_{0}\right)\right\}$ be a sequence of functions such that $f: E \rightarrow \mathbb{R}$, then we say f_{n} converges pointwise on E to f if
$\forall \epsilon>0, \exists n_{0}\left(\epsilon, x_{0}\right)$ s.t. $\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|<\epsilon, \forall n \geq n_{0}$. So, $\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)=f\left(x_{0}\right), x_{0} \in E$.
Note: Interchangeability of limits, differentiation, and integration is not necessarily true when you just have pointwise continuity. You need something stronger. (Uniform continuity).
Uniform Convergence (Sequence):
a sequence $f_{n}: E \rightarrow \mathbb{R}$ converges uniformly on E to f if $\forall \epsilon>0, \exists n_{0}(\epsilon)$ s.t. $\left|f_{n}(x)-f(x)\right|<\epsilon$,
$\forall n \geq n_{0}, \forall x \in E$.
(Note: n_{0} is independent of $x \in E$)
Uniform Convergence (Series):
a series $\sum_{n=0}^{\infty} f_{n}(x) ; f_{n}: E \rightarrow \mathbb{R}$ uniformly converges in E iff the sequence of partial sums $\left(S_{k}(x)=\sum_{n=0}^{k} f_{n}(x)\right)$ are uniformly converging to $S(x)$.
Uniformly Cauchy: a sequence of functions $\left\{f_{n}(x)\right\} ; f_{n} E \rightarrow \mathbb{R}$ is uniformly Cauchy if $\forall \epsilon<$ $0, \exists n_{0}(\epsilon)$ s.t $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon, \forall n, m \geq n_{0}, \forall x \in E$.

Sequences and Series of Functions Continued:

Sup Norm:

- $\|f\|_{\infty}=\|f\|_{\text {uniform }}=\|f\|_{\text {sup }}=\sup _{x \in K}|f(x)|$.
- $E=K$ compact $\Longrightarrow\|f\|_{\infty}=\max _{x \in K}|f(x)|$.

Sup Norm Convergence: a sequence of functions $\left\{f_{n}\right\} ; f_{n}: E \rightarrow \mathbb{R}$ converges in the sup norm on E if $\forall \epsilon>0, \exists n_{0}(\epsilon)$ such that $\left\|f_{n}-f_{m}\right\|_{\infty}=$ $\sup _{x \in E}\left|f_{n}(x)-f(x)\right|<\epsilon, \forall n>n_{0}$.
Theorem: For a sequence of functions,
Uniform Convergence
\Longleftrightarrow Uniformly Cauchy
\Longleftrightarrow Sup Norm Convergence
Theorem: $f_{n}: E \rightarrow \mathbb{R}$ and $f_{n} \in C(E)$.
If f_{n} converges uniformly to f on E, then $f \in C(E)$. Proof Hint: To prove this theorem, break it up into three parts (uniformly continuous, continuous, uniformly continuous) and use the $\frac{\epsilon}{3}$ trick!
Corollary: If $\left\{f_{n}\right\} \subseteq\left(C(E),\|\cdot\|_{\infty}\right)$ is Cauchy, then f_{n} converges uniformly to f on $E \Longrightarrow f \in C(E) \Longrightarrow$ $\left(C(E),\|\cdot\|_{\infty}\right)$ is complete.

