Summer Bridge Course: Analysis

Dr. Kahn

Infimum/Supremum

Upper bound: $A \subseteq \mathbb{R}$ is bounded above if $\exists U \in \mathbb{R}$ such that $a \leq U, \forall a \in A$. U is called the upper bound of A. **Lower bound:** $A \subseteq \mathbb{R}$ is bounded below if $\exists L \in \mathbb{R}$ such that $L \leq a, \forall a \in A$. L is called the lower bound of A. **Bounded:** A is bounded if A is bounded both above and below ($L \leq a \leq U, \forall a \in A$) **Supremum:** $E \subseteq \mathbb{R}, E \neq \emptyset$. $\alpha = \sup(E)$ if

- 1. $x \leq \alpha, \forall x \in E$
- 2. If $\gamma \in \mathbb{R}$ and $\gamma < \alpha$, then γ is not an upperbound of E.

Infimum: $E \subseteq \mathbb{R}, E \neq \emptyset$. $\beta = \inf(E)$ if

1. $\beta \leq x, \forall x \in E$

2. If $\gamma \in \mathbb{R}$ and $\gamma > \beta$, then γ is not a lower bound of E.

Completeness Property:

- 1. $E \subseteq \mathbb{R}, E \neq \emptyset$, and E is bounded above, then there exists $\alpha \in \mathbb{R}$ such that $\alpha = \sup(E)$. (Note: α may or may not be in E.)
- 2. $E \subseteq \mathbb{R}, E \neq \emptyset$, and E is bounded below, then there exists $\beta \in \mathbb{R}$ such that $\beta = \inf(E)$. (Note: β may or may not be in E.)

Archimedian Property: If $x, y \in \mathbb{R}$ and x > 0, then $\exists n \in \mathbb{N}$ such that nx > y. **Density of** \mathbb{Q} : If $x, y \in \mathbb{R}$ and x < y, then there always exists an $r \in \mathbb{Q}$ such that x < r < y.

Sequences in \mathbb{R}

Convergence: $\{x_n\}$ converges to $x \in \mathbb{R}$ if $\forall \epsilon > 0, \exists n_0(\epsilon)$ such that $|s_n - x| < \epsilon, \forall n > n_0$. **Proof Outline:** To show $\{x_n\}$ converges to x:

- 1. Do scratch work to find $|x_n x| < (\text{term involving } n) < \epsilon$.
- 2. Choose n_0 based off your scratch work.
- 3. Write out proof and include scratch work.

Diverges: $\{x_n\}$ diverges to ∞ if $\forall M > 0, \exists n_0(M)$ such that $x_n > M, \forall n > n_0$. Triangle Inequality:

- $\bullet ||x+y| \le |x|+|y|$
- $\bullet \ ||x| |y|| \le |x y|$

Theorem: If $\{x_n\}$ is a convergent sequence, then $\{x_n\}$ is bounded. **Theorem:** Let $a_n \to a$ and $b_n \to b$.

- $a_n \pm b_n \to a \pm b$
- $a_n b_n \to a b$
- $\frac{b_n}{a_n} \to \frac{b}{a}$ as long as $a_n \neq 0, a \neq 0, \forall n \in \mathbb{N}$
- $a_n + c \to a + c, c \in \mathbb{R}$
- $ca_n \to ca, c \in \mathbb{R}$

Theorem: If $a_n \to 0$ and b_n is bounded, then $a_n b_n \to 0$.

Squeeze Lemma: Let a_n, b_n, c_n be sequences of real numbers such that $a_n \leq b_n \leq c_n, \forall n \geq n_0$. If $a_n \to L$ and $c_n \to L$, then $b_n \to L$.

Sequences in \mathbb{R} continued:

Monotone Increasing: A sequence $\{x_n\}$ is monotone increasing if $x_{n+1} \ge x_n, \forall n \in \mathbb{N}$. (Strictly if $x_{n+1} > x_n$). Monotone Decreasing: A sequence $\{x_n\}$ is monotone decreasing if $x_{n+1} \leq x_n, \forall n \in \mathbb{N}$. (Strictly if $x_{n+1} < x_n$). **Theorem:** If $\{x_n\}$ is monotone and bounded, then $x_n \to x$. **Nested Interval Property:** $\{I_n\}$ is a sequence of closed and bounded intervals $I_n = [a_n, b_n], -\infty <$ $a_n < b_n < \infty$ such that $\subseteq \cdots \subseteq I_n \subseteq I_{n-1} \subseteq \cdots \subseteq I_1$. So, $I_{n+1} \subseteq I_n, \forall n \in \mathbb{N}$. So, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. **Subsequence:** Given a sequence $\{x_n\}$, consider the sequence $\{n_k\}$ of positive integers such that $n_1 < n_2$ $n_2 < n_3 < \cdots$. Then $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$. **Theorem:** If $\{x_n\} \subseteq \mathbb{R}$ such that $x_n \to x$, then every subsequence also converges to x. **Bolzano-Weierstrass:** Every bounded sequence has a convergent subsequence. **Cauchy:** A sequence $\{x_n\}$ is Cauchy if $\forall \epsilon > 0, \exists n_0(\epsilon)$ such that $|x_n - x_m| < \epsilon, \forall n, m > n_0$. (Note: Convergence \implies Cauchy) **Completeness of** \mathbb{R} : $\{x_n\} \subseteq \mathbb{R}$ is Cauchy implies $x_n \to x \in \mathbb{R}$

Important Known Sequences:

Special Need to Know Sequences:

- $\lim_{n\to\infty}\frac{1}{n^p}=0 \ (p>0)$
- $\lim_{n\to\infty} \sqrt[n]{p} = 1 \ (p > 0)$
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$
- $\lim_{n\to\infty} \frac{n^{\alpha}}{p^n} = 0 \ (p > 1, \alpha \in \mathbb{R})$
- $\lim_{n\to\infty} p^n = 0 \ (|p| < 1)$
- $\lim_{n\to\infty} \frac{p^n}{n!} = 0, \forall p \in \mathbb{R}$

Limit Supremum and Limit Infimum: Lim Sup: $\overline{\lim}_{n\to\infty} x_n = \inf_k \sup\{x_n : n \ge k\}$ $= \inf_k b_k = \lim_{k \to \infty} b_k$ Lim Inf: $\underline{\lim}_{n \to \infty} x_n = \sup_k \inf\{x_n : n \ge k\}$ $= \sup_k a_k = \lim_{k \to \infty} a_k$ **Theorem:** Let $\{x_n\} \subseteq \mathbb{R}$ (similar theorem holds true for lim inf) 1. $\overline{\lim}_{n\to\infty} x_n = \beta \in \mathbb{R}$ iff (a) (a) $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ such that $x_n <$ $\beta + \epsilon, \forall n > n_0$ (b) (b) Given $n \in \mathbb{N}, \exists k \in \mathbb{N}$ with $k \ge n$ such that $x_k > \beta - \epsilon$. 2. $\overline{\lim}_{n\to\infty} x_n = +\infty$ iff given M > 0 and $n \in$ $\mathbb{N}, \exists k \in \mathbb{N} \text{ such that } x_n \geq M, \forall k \geq n.$ 3. $\overline{\lim}_{n \to \infty} x_n = -\infty$ iff $x_n \to -\infty$ as $n \to \infty$. **Fact:** $x_n \to x$ iff $\overline{\lim} x_n = \lim x_n$ How to: If $E = \{$ subsequential limits of $x_n \}$, then • $\overline{\lim} x_n = \sup(E)$ • $\lim x_n = \inf(E)$

Topology on \mathbb{R} :

Interior Point: $E \subseteq \mathbb{R}$, $p \in E$ is an interior point if $\exists \epsilon > 0$ such that $(p - \epsilon, p + \epsilon) = N_{\epsilon}(p) \subseteq E$ **Limit Point:** $E \subseteq \mathbb{R}$, $p \in \mathbb{R}$ is a limit point of E if $\forall \epsilon > 0, \exists q \in E$ such that $q \neq p$ and $q \in N_{\epsilon}(p) \cap E$. **Int(E):** Int(E)={all interior points of E} **E':** E'={set of all limit points of E} **Closure of E:** $\overline{E}=E \cup E'$ **Open Set:** $O \subseteq \mathbb{R}$ is open if Int(O)=O. **Closed Set:** $F \subseteq \mathbb{R}$ is closed if F^c is open. **Theorem:** For open sets...

1. For any collection $\{O_{\alpha}\}_{\alpha \in A}, O_{\alpha} \subseteq \mathbb{R}$ open $\Longrightarrow \bigcup_{\alpha \in A} O_{\alpha}$ open.

2.
$$O_1, \cdots, O_n$$
 open $\implies \bigcap_{k=1}^n O_k$ open.

Theorem: For closed sets...

- 1. For $\{F_{\alpha}\}_{\alpha \in A}, F_{\alpha} \subseteq \mathbb{R}$ closed, $\forall \alpha \in A \implies \bigcap_{\alpha \in A} F_{\alpha}$ closed.
- 2. For $\{F_{\alpha}\}_{\alpha \in A}, F_{\alpha} \subseteq \mathbb{R}$ closed, $\forall \alpha \in A \implies \bigcup_{k=1}^{n} F_k$ closed.

Topology on \mathbb{R} continued: **Theorem:** $F \subseteq \mathbb{R}$ is closed $\iff F$ contains all its limit points. **Theorem:** If $E \subseteq \mathbb{R}$, then 1. \overline{E} is closed. 2. $E = \overline{E}$ iff E is closed. 3. $\overline{E} \subseteq F$ for every $F \subseteq \mathbb{R}$ closed such that $E \subseteq F$. **Open Cover:** $E \subseteq \mathbb{R}$. $\{O_{\alpha}\}_{\alpha \in A}$ is an open cover (i.e. $O_{\alpha} \subseteq \mathbb{R}$ open) and $E \subseteq \bigcup_{\alpha \in A} O_{\alpha}$ **Compact:** $K \subseteq \mathbb{R}$ is compact if every open cover has a finite subcover. $(\exists \alpha_1, \cdots, \alpha_n \in A \text{ such that})$ $K \subseteq O_{\alpha_1} \cup \cdots \cup O_{\alpha_n} = \bigcup_{k=1}^n O_{\alpha_k}).$ **Theorem:** Every compact subset of \mathbb{R} is closed an bounded. **Heine-Borel Theorem:** $[a,b] \subseteq \mathbb{R}$ is compact. $(-\infty < a, b < \infty)$ Heine-Borel-Bolzano-Weierstrass: $K \subseteq \mathbb{R}$, then TFAE: a) K is closed and bounded. b) K is compact. c) Every infinite set in K has a limit point in K. **Corollary:** Let $K \subseteq \mathbb{R}, K \neq \emptyset$. K is compact \implies every bounded sequence has a convergent subsequence. Cauchy-Schwartz: $(a_1, \dots, a_n), (b_1, \dots, b_n) \in \mathbb{R}^n$. $\sum |a_k| |b_k| \le (\sum |a_k|^2)^{\frac{1}{2}} (\sum |b_k|^2)^{\frac{1}{2}}.$ **Minkowski:** $(a_1, \dots, a_n), (b_1, \dots, b_n) \in \mathbb{R}^n$. $\left(\sum |a_k + b_k|^2\right)^{\frac{1}{2}} \le \left(\sum |a_k|^2\right)^{\frac{1}{2}} + \left(\sum |b_k|^2\right)^{\frac{1}{2}}$ **Höldei:** $\frac{1}{n} + \frac{1}{a} = 1$ $\sum_{k=1}^{n} |a_k| |b_k| \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |b_k|^q\right)^{\frac{1}{q}}$

Series of Real Numbers:

Theorem: If $S_n = \sum_{k=1}^n x_k$ converges, then the series $\sum_{k=1}^{\infty} x_k$ converges and $S = \sum_{k=1}^{\infty} x_k$. **Cauchy Criteria:** $\sum_{k=1}^{\infty} x_k$ converges \iff $\forall \epsilon > 0, \exists n_0(\epsilon)$ such that $|S_m - S_n| = |\sum_{k=n+1}^m x_k| < \epsilon, \forall n, m \ge n_0$. **Theorem of Convergence:** If $\sum_{k=1}^{\infty} x_k$ converges, then $\lim_{n\to\infty} x_n = 0$. **Theorem of Divergence:** If $\lim_{n\to\infty} |x_n| \ne 0$, then $\sum_{k=1}^{\infty} x_k$ diverges. Convergence Tests for Series

Comparison Tests:

- 1. If $|x_n| \leq c_n, \forall n \geq n_0$, where n_0 is fixed, then $\sum_{k=1}^{\infty} c_k < \infty \implies \sum_{k=1}^{\infty} x_k < \infty.$
- 2. If $a_k \ge 0, b_k \ge 0$ and $a_k \ge b_k, \forall k \ge n_0$ (n_0 fixed), then $\sum_{k=1}^{\infty} b_k = +\infty \implies \sum_{k=1}^{\infty} a_k = +\infty.$

Limit Comparison Tests: Suppose $a_k \ge 0$ and $b_k \ge 0$. Then,

- 1. If $\lim_{k \to \infty} \frac{a_k}{b_k} = L, 0 < L < \infty$, then $\sum_{k=1}^{\infty} a_k < \infty$ $\infty \iff \sum_{k=1}^{\infty} b_k < \infty$.
- 2. If $\lim_{k\to\infty} \frac{a_k}{b_k} = 0$ and $\sum_{k=1}^{\infty} b_k < \infty$, then $\sum_{k=1}^{\infty} a_k < \infty$.

Integral Test: Let $\{a_k\}$ be a decreasing sequence of nonnegative real numbers $(a_1 \ge a_2 \ge \cdots \ge a_n \ge \cdots \ge 0)$. Let $f(x) : [1, \infty) \to \mathbb{R}$ and $f(x) \ge 0$ such that f is monotone decreasing and $f(k) = a_k, \forall k \in \mathbb{N}$. Then $\sum_{k=1}^{\infty} a_k < \infty$ iff $\int_1^{\infty} f(x) dx < \infty$. **Root Test:** Given $\sum_{k=1}^{\infty} a_k$, let $\alpha = \overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|}$.

- 1. If $\alpha < 1$, then $\sum_{k=1}^{\infty} a_k$ converges.
- 2. If $\alpha > 1$, then $\sum_{k=1}^{\infty} a_k$ diverges.
- 3. If $\alpha = 1$, then the test is inconclusive.

Ratio Test: The series $\sum_{k=1}^{\infty} a_k$

1. converges if $\alpha = \overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1.$

2. diverges if $\frac{|a_{n+1}|}{a_n} \ge 1, \forall n \ge n_0$ for some $n_0 \in \mathbb{N}$.

Alternating Series Test: If $\{b_n\} \subseteq \mathbb{R}$ such that

1.
$$b_1 \ge b_2 \ge \cdots \ge b_n \ge b_{n+1} \ge \cdots \ge 0$$

2. $\lim_{n\to\infty} b_n = 0$

then $\sum (-1)^{k+1} b_k$ converges. **Absolute Convergence:** $\sum a_k$ converges absolutely if $\sum |a_k| < \infty$. **Theorem:** If $\sum a_k$ converges absolutely, $\sum a_k$ converges.

Important Known Series:				
		Geometric	p-Series	$n\log(n)$
		$\sum_{k=1}^{\infty} x^k$	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	$\sum_{n=2}^{\infty} \frac{1}{n(\log(n))^p}$
0	converges	$0 \le x < 1$	p > 1	p > 1
	diverges	$x \ge 1$	$p \leq 1$	$p \leq 1$

Continuous Functions:

Limit at a point: Given $L \in \mathbb{R}$, $\lim_{x \to a} f(x) = L$ if $\forall \epsilon > 0, \exists \delta(f, \epsilon, a) > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < |x - a| < \delta$.

Theorem: Let f be a real-valued function defined in some neighborhood $a \in \mathbb{R}$ (including a). Then,

- 1. f is continuous at a. $(\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } |f(x) - f(a)| < \epsilon \text{ if } |x - a| < \delta).$
- 2. $f(x_n) \to f(a) = L$ whenever $x_n \to a$.

Proof Outline: To show $\lim_{x\to a} f(x) = f(a)$:

- 1. Do scratch work to find appropriate δ by finding $|f(x) f(a)| < (\text{term involving } |x a|) < \epsilon.$
- 2. Note that sometimes you need to chose δ to be a minimum of two things to make the inequality true. Be careful!
- 3. Write out proof and include scratch work.

Right Limit: $\lim_{x\to a^+} f(x) = L^+$ is the right limit if $\forall \epsilon > 0, \exists \delta(f, a, \epsilon) > 0$ such that $|f(x) - L^+| < \epsilon$ if $a < x < a + \delta$. **Left Limit:** $\lim_{x\to a^-} f(x) = L^-$ is the left limit if $\forall \epsilon > 0, \exists \delta(f, a, \epsilon) > 0$ such that $|f(x) - L^-| < \epsilon$ if $a - \delta < x < a$. **Continuous at a:** f is continuous at a if

Continuous at a: f is continuous at a if $f(a^+) = \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a^-)$ **Facts:** If f, g are continuous functions at a, then

- f + g is continuous at a.
- fg is continuous at a.
- $\frac{1}{a}$ is continuous at $a \ (g(x) \neq 0)$

Composition Continuity: $f : A \to \mathbb{R}, g : B \to \mathbb{R}$, and Range $(f) \subseteq B$. If f is continuous at a and gis continuous at f(a), then $g \circ f(x) = g(f(x))$ is continuous at a.

Continuous Functions Continued: Uniform Continuous: $f : A \subseteq \mathbb{R} \to \mathbb{R}$. f is uniformly continuous on A if $\forall \epsilon > 0, \exists \delta(f, A, \epsilon) > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$. (Note: δ does NOT depend on a) **Lipschitz Continuous:** $f : A \to \mathbb{R}$ is Lipschitz continuous if $\exists M > 0$ such that $|f(x) - f(y)| \leq$ $M|x-y|, \forall x, y \in A.$ **Fact:** Lipschitz \implies uniform \implies continuous **Theorem:** If $f: K \to \mathbb{R}, K \subseteq \mathbb{R}$ compact, and f continuous on K, then f is uniformly continuous. **Monotone Increasing:** *f* is monotone increasing if $f(x) \leq f(y), \forall x < y.$ (Strictly if f(x) < f(y)) Monotone Decreasing: f is monotone decreasing if $f(x) \ge f(y), \forall x < y$. (Strictly if f(x) < f(y)) **Theorem:** If $f : I \to \mathbb{R}$ monotone increasing on I, then $f(p^+)$ and $f(p^-)$ exists for all $p \in I$ and $\sup_{x < p} f(x) = f(p^{-}) \le f(p) \le f(p^{+}) = \inf_{x > p} f(x).$

Sequences and Series of Functions:

Pointwise Limit: Let x_0 be fixed in *E*. Then $\{f_n(x_0)\} \subseteq \mathbb{R}$. Let $f(x_0) = n_{x_0}$. Let $\{f_n(x_0)\}$ be a sequence of functions such that $f: E \to \mathbb{R}$, then we say f_n converges pointwise on E to f if $\forall \epsilon > 0, \exists n_0(\epsilon, x_0) \text{ s.t. } |f_n(x_0) - f(x_0)| < \epsilon, \forall n \ge n_0.$ So, $\lim_{n \to \infty} f_n(x_0) = f(x_0), x_0 \in E$. Note: Interchangeability of limits, differentiation, and integration is not necessarily true when you just have pointwise continuity. You need something stronger. (Uniform continuity). **Uniform Convergence (Sequence):** a sequence $f_n: E \to \mathbb{R}$ converges uniformly on E to f if $\forall \epsilon > 0, \exists n_0(\epsilon)$ s.t. $|f_n(x) - f(x)| < \epsilon$, $\forall n \ge n_0, \forall x \in E.$ (Note: n_0 is independent of $x \in E$) **Uniform Convergence (Series):** a series $\sum_{n=0}^{\infty} f_n(x); f_n : E \to \mathbb{R}$ uniformly converges in E iff the sequence of partial sums $(S_k(x)) = \sum_{n=0}^k f_n(x)$ are uniformly converging to S(x). **Uniformly Cauchy:** a sequence of functions $\{f_n(x)\}; f_n E \to \mathbb{R}$ is uniformly Cauchy if $\forall \epsilon < \epsilon$ $0, \exists n_0(\epsilon) \text{ s.t } |f_n(x) - f_m(x)| < \epsilon, \forall n, m \ge n_0, \forall x \in E.$

Sequences and Series of Functions Continued: Sup Norm:

- $||f||_{\infty} = ||f||_{\text{uniform}} = ||f||_{\sup} = \sup_{x \in K} |f(x)|.$
- E = K compact $\implies ||f||_{\infty} = \max_{x \in K} |f(x)|.$

Sup Norm Convergence: a sequence of functions $\{f_n\}$; $f_n : E \to \mathbb{R}$ converges in the sup norm on E if $\forall \epsilon > 0, \exists n_0(\epsilon)$ such that $||f_n - f_m||_{\infty} = \sup_{x \in E} |f_n(x) - f(x)| < \epsilon, \forall n > n_0$. **Theorem:** For a sequence of functions,

> Uniform Convergence \iff Uniformly Cauchy \iff Sup Norm Convergence

Theorem: $f_n : E \to \mathbb{R}$ and $f_n \in C(E)$. If f_n converges uniformly to f on E, then $f \in C(E)$. **Proof Hint:** To prove this theorem, break it up into three parts (uniformly continuous, continuous, uniformly continuous) and use the $\frac{\epsilon}{3}$ trick! **Corollary:** If $\{f_n\} \subseteq (C(E), \|\cdot\|_{\infty})$ is Cauchy, then f_n converges uniformly to f on $E \implies f \in C(E) \implies$ $(C(E), \|\cdot\|_{\infty})$ is complete.