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Upper bound: A ⊆ R is bounded above if ∃U ∈ R
such that a ≤ U,∀a ∈ A.
U is called the upper bound of A.
Lower bound: A ⊆ R is bounded below if ∃L ∈ R
such that L ≤ a,∀a ∈ A.
L is called the lower bound of A.
Bounded: A is bounded if A is bounded both above
and below (L ≤ a ≤ U,∀a ∈ A)
Supremum: E ⊆ R, E 6= ∅. α = sup(E) if

1. x ≤ α,∀x ∈ E

2. If γ ∈ R and γ < α, then γ is not an upperbound
of E.

Infimum: E ⊆ R, E 6= ∅. β = inf(E) if

1. β ≤ x,∀x ∈ E

2. If γ ∈ R and γ > β, then γ is not a lower bound
of E.

Completeness Property:

1. E ⊆ R, E 6= ∅, and E is bounded above, then
there exists α ∈ R such that α = sup(E).
(Note: α may or may not be in E.)

2. E ⊆ R, E 6= ∅, and E is bounded below, then
there exists β ∈ R such that β = inf(E).
(Note: β may or may not be in E.)

Archimedian Property: If x, y ∈ R and x > 0,
then ∃n ∈ N such that nx > y.
Density of Q: If x, y ∈ R and x < y, then there
always exists an r ∈ Q such that x < r < y.

Infimum/Supremum

Convergence: {xn} converges to x ∈ R if
∀ε > 0,∃n0(ε) such that |sn − x| < ε,∀n > n0.
Proof Outline: To show {xn} converges to x:

1. Do scratch work to find |xn − x| <
(term involving n) < ε.

2. Choose n0 based off your scratch work.

3. Write out proof and include scratch work.

Diverges: {xn} diverges to ∞ if
∀M > 0,∃n0(M) such that xn > M, ∀n > n0.
Triangle Inequality:

• |x+ y| ≤ |x|+ |y|

• ||x| − |y|| ≤ |x− y|

Theorem: If {xn} is a convergent sequence, then
{xn} is bounded.
Theorem: Let an → a and bn → b.

• an ± bn → a± b

• anbn → ab

• bn
an
→ b

a as long as an 6= 0, a 6= 0,∀n ∈ N

• an + c→ a+ c, c ∈ R

• can → ca, c ∈ R

Theorem: If an → 0 and bn is bounded, then
anbn → 0.
Squeeze Lemma: Let an, bn, cn be sequences of real
numbers such that an ≤ bn ≤ cn,∀n ≥ n0. If an → L
and cn → L, then bn → L.

Sequences in R
Monotone Increasing: A sequence {xn} is mono-
tone increasing if xn+1 ≥ xn,∀n ∈ N.
(Strictly if xn+1 > xn).
Monotone Decreasing: A sequence {xn} is mono-
tone decreasing if xn+1 ≤ xn,∀n ∈ N.
(Strictly if xn+1 < xn).
Theorem: If {xn} is monotone and bounded, then
xn → x.
Nested Interval Property: {In} is a sequence of
closed and bounded intervals In = [an, bn],−∞ <
an < bn <∞ such that ⊆ · · · ⊆ In ⊆ In−1 ⊆ · · · ⊆ I1.
So, In+1 ⊆ In,∀n ∈ N. So,

⋂∞
n=1 In 6= ∅.

Subsequence: Given a sequence {xn}, consider the
sequence {nk} of positive integers such that n1 <
n2 < n3 < · · · . Then {xnk} is a subsequence of {xn}.
Theorem: If {xn} ⊆ R such that xn → x, then every
subsequence also converges to x.
Bolzano-Weierstrass: Every bounded sequence has
a convergent subsequence.
Cauchy: A sequence {xn} is Cauchy if ∀ε > 0,∃n0(ε)
such that |xn − xm| < ε,∀n,m ≥ n0.
(Note: Convergence =⇒ Cauchy)
Completeness of R: {xn} ⊆ R is Cauchy implies
xn → x ∈ R

Sequences in R continued:

Special Need to Know Sequences:

• limn→∞
1
np = 0 (p > 0)

• limn→∞ n
√
p = 1 (p > 0)

• limn→∞
n
√
n = 1

• limn→∞
nα

pn = 0 ( p > 1, α ∈ R)

• limn→∞ pn = 0 (|p| < 1)

• limn→∞
pn

n! = 0, ∀p ∈ R

Important Known Sequences:

1



Lim Sup: limn→∞xn = infk sup{xn : n ≥ k}
= infk bk = limk→∞ bk
Lim Inf: limn→∞xn = supk inf{xn : n ≥ k}
= supk ak = limk→∞ ak
Theorem: Let {xn} ⊆ R (similar theorem holds true
for lim inf)

1. limn→∞xn = β ∈ R iff

(a) (a) ∀ε > 0,∃n0 ∈ N such that xn <
β + ε, ∀n ≥ n0

(b) (b) Given n ∈ N,∃k ∈ N with k ≥ n such
that xk > β − ε.

2. limn→∞xn = +∞ iff given M > 0 and n ∈
N,∃k ∈ N such that xn ≥M,∀k ≥ n.

3. limn→∞xn = −∞ iff xn → −∞ as n→∞.

Fact: xn → x iff limxn = limxn
How to: If E = {subsequential limits of xn}, then

• limxn = sup(E)

• limxn = inf(E)

Limit Supremum and Limit Infimum:

Interior Point: E ⊆ R, p ∈ E is an interior point if
∃ε > 0 such that (p− ε, p+ ε) = Nε(p) ⊆ E
Limit Point: E ⊆ R, p ∈ R is a limit point of E if
∀ε > 0,∃q ∈ E such that q 6= p and q ∈ Nε(p) ∩ E.
Int(E): Int(E)={all interior points of E}
E′: E′={set of all limit points of E}
Closure of E: E=E ∪ E′

Open Set: O ⊆ R is open if Int(O)=O.
Closed Set: F ⊆ R is closed if Fc is open.
Theorem: For open sets...

1. For any collection {Oα}α∈A, Oα ⊆ R open =⇒⋃
α∈AOα open.

2. O1, · · · , On open =⇒
⋂n
k=1Ok open.

Theorem: For closed sets...

1. For {Fα}α∈A, Fα ⊆ R closed, ∀α ∈ A =⇒⋂
α∈A Fα closed.

2. For {Fα}α∈A, Fα ⊆ R closed, ∀α ∈ A =⇒⋃n
k=1 Fk closed.

Topology on R:

Theorem: F ⊆ R is closed ⇐⇒ F contains all its
limit points.
Theorem: If E ⊆ R, then

1. E is closed.

2. E = E iff E is closed.

3. E ⊆ F for every F ⊆ R closed such that E ⊆ F .

Open Cover: E ⊆ R. {Oα}α∈A is an open cover
(i.e. Oα ⊆ R open) and E ⊆

⋃
α∈AOα

Compact: K ⊆ R is compact if every open cover
has a finite subcover. (∃α1, · · · , αn ∈ A such that
K ⊆ Oα1

∪ · · · ∪Oαn =
⋃n
k=1Oαk).

Theorem: Every compact subset of R is closed an
bounded.
Heine-Borel Theorem: [a, b] ⊆ R is compact.
(−∞ < a, b <∞)
Heine-Borel-Bolzano-Weierstrass: K ⊆ R, then
TFAE:

a) K is closed and bounded.

b) K is compact.

c) Every infinite set in K has a limit point in K.

Corollary: Let K ⊆ R,K 6= ∅. K is compact
=⇒ every bounded sequence has a convergent subse-
quence.
Cauchy-Schwartz: (a1, · · · , an), (b1, · · · , bn) ∈ Rn.∑
|ak||bk| ≤ (

∑
|ak|2)

1
2 (
∑
|bk|2)

1
2 .

Minkowski: (a1, · · · , an), (b1, · · · , bn) ∈ Rn.

(
∑
|ak + bk|2)

1
2 ≤ (

∑
|ak|2)

1
2 + (

∑
|bk|2)

1
2

Höldei: 1
p + 1

q = 1.∑n
k=1 |ak||bk| ≤ (

∑n
k=1 |ak|p)

1
p (
∑n
k=1 |bk|q)

1
q

Topology on R continued:

Theorem: If Sn =
∑n
k=1 xk converges, then the

series
∑∞
k=1 xk converges and S =

∑∞
k=1 xk.

Cauchy Criteria:
∑∞
k=1 xk converges ⇐⇒

∀ε > 0,∃n0(ε) such that |Sm − Sn| = |
∑m
k=n+1 xk| <

ε,∀n,m ≥ n0.
Theorem of Convergence: If

∑∞
k=1 xk converges,

then limn→∞ xn = 0.
Theorem of Divergence: If limn→∞ |xn| 6= 0, then∑∞
k=1 xk diverges.

Series of Real Numbers:

Comparison Tests:

1. If |xn| ≤ cn,∀n ≥ n0, where n0 is fixed, then∑∞
k=1 ck <∞ =⇒

∑∞
k=1 xk <∞.

2. If ak ≥ 0, bk ≥ 0 and ak ≥ bk,∀k ≥ n0
(n0 fixed), then

∑∞
k=1 bk = +∞ =⇒∑∞

k=1 ak = +∞.

Limit Comparison Tests: Suppose ak ≥ 0 and
bk ≥ 0. Then,

1. If limk→∞
ak
bk

= L, 0 < L <∞, then
∑∞
k=1 ak <

∞ ⇐⇒
∑∞
k=1 bk <∞.

2. If limk→∞
ak
bk

= 0 and
∑∞
k=1 bk < ∞, then∑∞

k=1 ak <∞.

Integral Test: Let {ak} be a decreasing sequence
of nonnegative real numbers (a1 ≥ a2 ≥ · · · ≥ an ≥
· · · ≥ 0). Let f(x) : [1,∞) → R and f(x) ≥ 0 such
that f is monotone decreasing and f(k) = ak,∀k ∈ N.
Then

∑∞
k=1 ak <∞ iff

∫∞
1
f(x)dx <∞.

Root Test: Given
∑∞
k=1 ak, let α = limn→∞

n
√
|an|.

1. If α < 1, then
∑∞
k=1 ak converges.

2. If α > 1, then
∑∞
k=1 ak diverges.

3. If α = 1, then the test is inconclusive.

Ratio Test: The series
∑∞
k=1 ak

1. converges if α = limn→∞|an+1

an
| < 1.

2. diverges if |an+1|
an
≥ 1,∀n ≥ n0 for some n0 ∈ N.

Alternating Series Test: If {bn} ⊆ R such that

1. b1 ≥ b2 ≥ · · · ≥ bn ≥ bn+1 ≥ · · · ≥ 0

2. limn→∞ bn = 0

then
∑

(−1)k+1bk converges.
Absolute Convergence:

∑
ak converges absolutely

if
∑
|ak| <∞.

Theorem: If
∑
ak converges absolutely,

∑
ak

converges.

Convergence Tests for Series
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Geometric p-Series n log(n)∑∞
k=1 x

k
∑∞
n=1

1
np

∑∞
n=2

1
n(log(n))p

converges 0 ≤ x < 1 p > 1 p > 1
diverges x ≥ 1 p ≤ 1 p ≤ 1

Important Known Series:

Limit at a point: Given L ∈ R, limx→a f(x) = L if
∀ε > 0,∃δ(f, ε, a) > 0 such that |f(x) − L| < ε whe-
never 0 < |x− a| < δ.
Theorem: Let f be a real-valued function defined in
some neighborhood a ∈ R (including a). Then,

1. f is continuous at a.
(∀ε > 0,∃δ > 0 s.t. |f(x) − f(a)| < ε if
|x− a| < δ).

2. f(xn)→ f(a) = L whenever xn → a.

Proof Outline: To show limx→a f(x) = f(a):

1. Do scratch work to find appropriate δ by finding
|f(x)− f(a)| < (term involving |x− a|) < ε.

2. Note that sometimes you need to chose δ to be
a minimum of two things to make the inequality
true. Be careful!

3. Write out proof and include scratch work.

Right Limit: limx→a+ f(x) = L+ is the right limit
if ∀ε > 0,∃δ(f, a, ε) > 0 such that |f(x) − L+| < ε if
a < x < a+ δ.
Left Limit: limx→a− f(x) = L− is the left limit if
∀ε > 0,∃δ(f, a, ε) > 0 such that |f(x) − L−| < ε if
a− δ < x < a.
Continuous at a: f is continuous at a if
f(a+) = limx→a+ f(x) = limx→a− f(x) = f(a−)
Facts: If f, g are continuous functions at a, then

• f + g is continuous at a.

• fg is continuous at a.

• 1
g is continuous at a (g(x) 6= 0)

Composition Continuity: f : A → R, g : B → R,
and Range(f) ⊆ B. If f is continuous at a and g
is continuous at f(a), then g ◦ f(x) = g(f(x)) is
continuous at a.

Continuous Functions:

Uniform Continuous: f : A ⊆ R → R. f is uni-
formly continuous on A if ∀ε > 0,∃δ(f,A, ε) > 0 such
that |f(x)− f(y)| < ε whenever |x− y| < δ.
(Note: δ does NOT depend on a)
Lipschitz Continuous: f : A → R is Lipschitz
continuous if ∃M > 0 such that |f(x) − f(y)| ≤
M |x− y|,∀x, y ∈ A.
Fact: Lipschitz =⇒ uniform =⇒ continuous
Theorem: If f : K → R, K ⊆ R compact, and f
continuous on K, then f is uniformly continuous.
Monotone Increasing: f is monotone increasing if
f(x) ≤ f(y),∀x < y. (Strictly if f(x) < f(y))
Monotone Decreasing: f is monotone decreasing
if f(x) ≥ f(y),∀x < y. (Strictly if f(x) < f(y))
Theorem: If f : I → R monotone increasing on
I, then f(p+) and f(p−) exists for all p ∈ I and
supx<p f(x) = f(p−) ≤ f(p) ≤ f(p+) = infx>p f(x).

Continuous Functions Continued:

Pointwise Limit: Let x0 be fixed in E. Then
{fn(x0)} ⊆ R. Let f(x0) = nx0 . Let {fn(x0)} be a
sequence of functions such that f : E → R, then we
say fn converges pointwise on E to f if
∀ε > 0,∃n0(ε, x0) s.t. |fn(x0) − f(x0)| < ε, ∀n ≥ n0.
So, limn→∞ fn(x0) = f(x0), x0 ∈ E.
Note: Interchangeability of limits, differentiation,
and integration is not necessarily true when you
just have pointwise continuity. You need something
stronger. (Uniform continuity).
Uniform Convergence (Sequence):
a sequence fn : E → R converges uniformly on E to
f if ∀ε > 0,∃n0(ε) s.t. |fn(x)− f(x)| < ε,
∀n ≥ n0,∀x ∈ E.
(Note: n0 is independent of x ∈ E)
Uniform Convergence (Series):
a series

∑∞
n=0 fn(x); fn : E → R uniformly

converges in E iff the sequence of partial sums
(Sk(x) =

∑k
n=0 fn(x)) are uniformly converging to

S(x).
Uniformly Cauchy: a sequence of functions
{fn(x)}; fnE → R is uniformly Cauchy if ∀ε <
0,∃n0(ε) s.t |fn(x)− fm(x)| < ε,∀n,m ≥ n0,∀x ∈ E.

Sequences and Series of Functions:

Sup Norm:

• ‖f‖∞ = ‖f‖uniform = ‖f‖sup = supx∈K |f(x)|.

• E = K compact =⇒ ‖f‖∞ = maxx∈K |f(x)|.

Sup Norm Convergence: a sequence of functi-
ons {fn}; fn : E → R converges in the sup norm
on E if ∀ε > 0,∃n0(ε) such that ‖fn − fm‖∞ =
supx∈E |fn(x)− f(x)| < ε,∀n > n0.
Theorem: For a sequence of functions,

Uniform Convergence

⇐⇒ Uniformly Cauchy

⇐⇒ Sup Norm Convergence

Theorem: fn : E → R and fn ∈ C(E).
If fn converges uniformly to f on E, then f ∈ C(E).
Proof Hint: To prove this theorem, break it up into
three parts (uniformly continuous, continuous, uni-
formly continuous) and use the ε

3 trick!
Corollary: If {fn} ⊆ (C(E), ‖ · ‖∞) is Cauchy, then
fn converges uniformly to f on E =⇒ f ∈ C(E) =⇒
(C(E), ‖ · ‖∞) is complete.

Sequences and Series of Functions Continued:
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